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Abstract Using the formal series symmetry approach, we obtain three sets of generalized 
symmetries of the Anis-type breaking soliton equalion. These sets of formal series symmetries 
are not truncated except that the arbitmy functions of the formal series symmetries ae fixed 
as palynomials of the corresponding independent variables. Differing from the fruncated cases 
such as KP and Toda field equations, these non-truncated symmetries constitute another type of 
generalization of lhe Virasoro Pgebta 

1. Introduction 

The importance of the Virasoro algebra in string theory, integrable models, ZD gravity and 
conformal field theory is well known. Recently, the Vuasoro algebra has been extended 
to a more general form, W, algebra, which has been applied in various modern physics 
fields like the sl(00) Toda field theory [I], integrable models 121, membrane theory [31 
and W string and W gravity theories [4]. In the study of the symmetries of the bigher- 
dimensional integrable models, we have established a formal series symmetry approach to 
obtain generalized symmetries for a general type of higher-dimensional model. A simple 
formal series symmetry formula is given. For some integrable models such as the Toda field 
equation [SI. the KP equation [6] .  the two-dimensional dispersive long-wave equation [7] and 
the Nizhnik-Novikov-Veselov equation [SI, the formal series symmetries become truncated. 
These sets of truncated symmetries constitute some extensions of the usual W, algebra [5- 
81 which is one type of generalization of the Virasoro algebra. However, for some other 
types of (2 + 1)-dimensional integrable models such as the Davey-Stewartson equation 
[9], the KdV-It0 equation [IO] and Sawada-Kortera equation [Ill,  only finite truncated 
symmetries are found and we have not found a generalized W, symmetry algebra for these 
types of integrable models. Now the significant questions arise: whether the non-truncated 
symmetries are meaningful and whether the non-truncated symmetries constitute a closed 
symmetry algebra? 

In section 2 of this paper, we would like to study the symmetries of the (2 + 1)- 
dimensional m s - t y p e  of breaking soliton equation. Three sets of formal series symmetries 
are found. Generally, these sets of formal series symmetries are not truncated for arbitrary 
functions while for some special selection of the arbitrary functions, say, polynomials of 
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their arguments, the series will be truncated. The full symmetry algebra of these sets of 
non-truncated formal series symmetries is given in section 3. Section 4 contains a summary 
and discussion. 

2. Symmetries of the Ams-type breaking soliton equation 

In this section, we will consider the SymtxIehiy of the following (2 + 1)-dimensional AKNS- 
type nonlinear evolution equation 

Equations (1) and (2) can be considered as the compatibility condition for the following 
Lax pair: 

with 

and 

E x  = o  Br  = % C y  (6) 

Mt - Nx + M N  - N M  - 2 E M y = 0 .  (7) 
When q = -r* = @, the equation system (1) and (2) reduces to a (2 + 1)-dimensional 

(8) 
and when y = x ,  equation (8) is just the well known (1 + I)-dimensional nonlinear 
Schradinger equation. Equation (8) may be found in 1121. In [13] and [14] equation (8) 
was deduced from twistor space and its soliton solutions are found by the Hiruta method. 
More solutions of (3) were given in [I51 by Darboux transformation. 

It is known that [I61 the equation system ( 1 )  and (2) possesses a recursion operator 

i.e. equations (1) and (2) have the non-isospectral zero curvature equation 

nonlinear Schrodinger equation 

i@, + lclrl + 2+(a;1i@1z)y = o 

which is the same as that of the (1 + I)-dimensional AKNS system. Then using the recursion 
operator and the seed symmetries, say space x and y translation invariance and scaling 
invariance, one can get some sets of infinitely many symmetries [I61 (U c)). 

5, - - *"(tut + yu,)  T" ' - - @"-'(-xu, - U + yu,). (10) 
Using the 'dressing method' [17], the authors of [I81 have obtained all t X  (k > 0) dependent 
symmetries. In this paper we manage to derive more generalized symmetries of the equation 
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system (1) and (2 )  by means of a much simpler method given in I5-81. For simplicity in 
the notation, we rewrite equations (1) and (2) as 

(11) 
A symmetry of equation ( l l ) ,  U ,  is defined as the solution of the linearized equation (11). 

ut = @U, = K ( q ,  r )  = K(u) .  

which means equation ( 1  1) is invariant in form under the transformation U + U f EU with 
an infinitesimal parameter Q. Now we look for the solutions of equation (12) having the 
form 

where f (y)  is an arbitrary function of y, fk'(y) = $f(y) and u[k] should be determined 
later. Substituting equation (13) into equation (12), we have 

Because f is an arbitrary function of y, equation (14) should be true at any order of 
derivatives of f(y). That means 

Uf[O1 = K'u[Ol (15) 
~ , [ k ]  - K ' ~ [ k l  6 ~ [ k  - 1 1  ( k  2 0) .  (16) 

Equation (15) shows us that u[O] itself should he a symmetry of equation (14), while ark] 
(k > 0) should be determined recursively from equation (16). Fortunately, because u[O] is 
a symmetry and @ is a recursion operator of the model. equation (16) can be solved easily. 
The result reads: 

(17) 
tk 
k !  

Substituting equation (17) into (13) we can get a formal series symmetry starting from every 
one of  known symmetry: 

~ [ k ]  = - O k ~ [ O j .  

Generally speaking, series (18) is not truncated for the general function f(y). However, 
i f  f(y) is fixed as a polynomial of y. say, f = yn3 then o(f) becomes truncated. For 
instance: 

Using the known symmetries given in [16j or 1181, we can get various sets of formal 
series symmetries. However, many of them are not independent. The only three sets of 
independent formal series symmetries read: 
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where R = 0, 1, 2, . . . because of K!, = 0 (m < 0) and m = 0, & I ,  h.2, . . . because of 
Q being invertible [I91 and K?, # 0, TI,  P 0. If we restrict f as polynomials of y, then 
all the symmetries of 1161 and [IS] can be obtained as linear combinations of (20)-(22) 
with f = y' (r = 0, 1, 2, ... ). For instance, T: = KA(y), r: = sm(l), K i  = K,!(l) and 
K i  = Ki(1). At first sight, one may use (20x22) as new seed symmetries to get new 
symmetries by substituting them into equation (IS), but this procedure does not yield any 
new result because we can redefine the arbitrary function of (18). We omit the proof of this 
conclusion due to its simplicity. 

3. Algebra structure of the non-truncated formal series symmetries of the AKNS-Qpe 
breaking soliton equation 

In this section, we shall consider the algebraic structure of the symmetries of the equation 
system (1) and (2) obtained in the last section. The Lie product of two symmetries A and 
E is defined as 

(23) 
a 

[A, BI = A'B - B'A = lim - [ A ( u  +EL?) - B(u f C A ) ] .  
f+o at. 

In order to find the algebraic structures of the formal series symmetries KL(f), K;(f) and 
r , ( f ) ,  we write down the known algebraic structure of symmetries Kj, K," and r,' which 
have been given by Li [16] 

IK;, KAI = rK;. K 3  = [ K ; ,  K:] = 0 (24) 
(25) [ri, ~ , 3  = mKm+n-l 

GI= (m - l ) ~ i + ~ - ~  (26) 
[r,!, = (m -+A+n- l .  (27) 

Using equations (24)-(27), we can get the full symmetry algebra of Kj(f), K:(f) and 

I 

rn(f): 
rK!cfi,, K A ( f ) I =  0 (28) 
[KA(f), K , m  = - K A + A f g )  (29) 
[K,2(fi), K 3 f i ) l  = K:tz(flf2 - f 2 h )  (30) 

(31) [rdf)? KA&)l =m~,+,-~(fg) + 
[rdf)? Ki(g) l=  (m - VK:+n-1(f8) + Ki+n-l(~fg) - %+.(fg) (32) 
[rn(f), r,(g)l=(m-rr)r,+,-l(fg)t cmtn-IGfy - f g y )  (33) 

where f = d f ( y ) .  
The denvation of the commutation relations (28)<33) is rather straightforward. Here 

we only give the derivation of the commutation relation (30), while the others can be derived 
in a similar way. 

I 

PV 
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Now, we see that, though the formal series symmetries are not truncated for general function 
f ( y ) ,  we can still get a closed symmetry algebra. In particular two types of generalized 
Virasoro algebra exist for non-truncated series symmetries K,”(f)  and r n ( f ) .  Note that the 
generalized Virasoro type symmetry algebras (30) and (33) are valid not only for n ,  m 2 0, 
but also for n. m < 0 because Q, the recursion operator of AKNS, is invertible [19] and K: 
and r,! are not equal to zero for n < 0. As a comparison, in some other integrable models, 
like the KP and Toda equations [5,6],  the generalized Wm algebra exists only for n, m 2 0. 

If we take the arbitrary function fb) as a polynomial of y, say y ” ,  the generalized 
Virasoro algebras constituted by K : ( f )  and t(f) reduce to 

(35) [w;, w;] = (s - r)w,‘+‘-’ m+n (U( = ~ : ( y ‘ ) )  m, n.  r, s = 0, +I ,  & z . .  . 
and 

[vi’, v i ]  = (m - n + s  -r)vLz-, (v; = rn(y‘)) m,n,r,s =O,ft1,12, .  . . . 
(36) 

Furthermore, the algebra (35) and (36) will reduce to the usual Virasoro algebra for 
m = n = 0 and r = s = 0 respectively. W; and V; are truncated for r > 0. If we take the 
arbitrary function f ( y )  as the exponential of y say, f (y)  = expry ( I  = 0, f l ,  12 ,  . . .), 
the generalized Virasoro algebra constituted by K;(f) reduces to 

(37) 

where W; = Ki(expry) are not truncated for all non-zero r .  The algebra (37) will also 
reduce to the usual Virasoro algebra for m = n = 0, whereas the algebra (33) is not closed 
for f (y)  = expry. Moreover, if we restrict f ( y )  as 

[W;, wk] = (s - r )WiTs  n ,m ,  r, s = 0, fl ;t 2 , .  . . 

f(y) = y‘expsy (r,s = 0. 1 1 , 1 2 , .  . .) (38) 
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then the algebras (30) and (34) reduce to the 'coloured' Virasoro algebras (W,"'' 
K:(y'expsy), V y  E r,(y'expsg), n, r, s = 0, & I ,  f2,. . .) 

(39) I ,  trg - I ..rI tq n t r w t . n  [W;;.", W:,sz] = (r2 - rl)Wn,tn2 
[V;;,"', V;;,sl] = (nz - ni +rz  -rt)b'n,+,,2:'l r , t n  I t h  + (sz - S I ) V , , ~ , , - ~  r ,  t T , + l . S ,  ts, 

t ($2 -sl)w",t", 

(40) 
where all \VF E K:(y' expsy) and V y  = r,(y'expsy) are not truncated fors  # 0. 

4. Summary and discussion 

The breaking soliton equation is another type of (2 + 1)-dimensional integrable model. 
Any (1 + 1)-dimensional integrable model which has one hereditary recursion operator can 
be extended to a (2 4- 1)-dimensional breaking soliton equation. The AKNS-type (2 t I)- 
dimensional breaking soliton equation is a typical one amongst them. In this paper we have 
studied the symmetry structure of the AKNS-type breaking soliton equation by means of the 
formal series symmetry approach. Starting from every one of the known symmetries, one 
can obtain a new symmetry with an arbitrary function of y .  Generally, this new symmetry 
exhibits as a non-truncated series. If the arbitrary function is fixed as a polynomial of y ,  
then the formal series is truncated naturally. Using the known simple symmetries given by 
Li 116,181, we get three sets of generalized infinitely many formal series symmetries. All 
the spacetime polynomial dependent symmetries can be obtained from these formal series 
symmetries simply by taking the arbitrary functions of these symmetries as polynomials. 
From [5-81, we know chat the truncated symmetries obtained from the formal series 
symmetries constitute usually the generalized W, algebra, a type of generalization of 
the usual Virasoro algebra, whereas the non-truncated symmetries of the breaking soliton 
equation constitute another type of generalization of the Virasoro algebra. For the AKNS-type 
breaking soliton equation, two types of generalized Virasoro algebras constituted by two sets 
of non-truncated symmetries are found. If we fix the arbitrary functions as the polynomials 
or exponentials of y ,  then some types of usual Virasoro algebras can be obtained as some 
special subalgebras. 

Though the discussion of this paper is confined to the case of the AKNS-type breaking 
soliton equation, many of the results remain valid for all breaking soliton equations. For 
instance, symmetries Kl(f) and Kt(f) shown by equations (21) and (22) are valid for 
all breaking soliton equations whence the recursion operators of them are space ( x ,  y) 
translation invariant and then the generalized symmetry algebras (28)-(30) constituted 
by K, ' ( f )  and K , " ( f )  are also valid for all (1, y)-translation invariant breaking soliton 
hierarchies. The non-truncated formal series symmetries are worthy of further study 
especially in other types of integrable model. 
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