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Abstract. Using the forinal series symmetry approach, we obtain three sets of peneralized
symmetries of the AKNS-type breaking soliton equation. These sets of formal series symmetries
are nat truncated except that the arbitrary functions of the formal series symmetries are fixed
as polynomials of the corresponding independent variables. Differing from the truncated cases
such as kp and Toda field equations, these non-truncated symmetries constitute another type of
generalization of the Virasoro algebra.

1. Introduction

The importance of the Virasoro algebra in string theory, integrable models, 2D gravity and
conformal field theory is well known. Recently, the Virasoro algebra has been extended
to a more general form, Wy aigebra, which has been applied in various modern physics
fields like the si(oo) Toda field theory [1], integrable models [2], membrane theory [3]
and W string and W gravity theories {4]. In the study of the symmetries of the higher-
dimensiona) integrable models, we have established a formal series symunetry approach to
obtain generalized symmetries for a general type of higher-dimensional model. A simple
formal series symmetry formuia is given. For some integrable models such as the Toda field
equation [5], the KP equation [6], the two-dimensional dispersive long-wave equation [7] and
the Nizhnik—Novikov—Veselov equation 8], the formal series symmeiries become truncated.
These sets of truncated symmetries constitute some extensions of the usual W, algebra [5—
8] which is one type of generalization of the Virasoro algebra. However, for some other
types of (2 4 1)-dimensional integrable models such as the Davey—Stewarison equation
[91, the Kdv-Iio equation [10] and Sawada-Kortera equation [11], only finite truncated
symmetries are found and we have not found a generalized W, symmetry algebra for these
types of integrable models. Now the significant questions arise: whether the non-truncated
symmetries are meaningful and whether the non-truncated symmetries constitute a closed
symmetry algebra?

In section 2 of this paper, we would like to study the symmetries of the (2 + 1)-
dimensional AKNS-type of breaking soliton equation. Three sets of formal series symmetries
are found. Generally, these sets of formal series symmetries are not truncated for arbitrary
functions while for some special selection of the arbitrary functions, say, polynomials of
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their arguments, the series will be truncated. The full symmetry algebra of these sets of
non-truncated formal series symmetries is given in section 3. Section 4 contains a summary
and discussion.

2. Symmetries of the AKNS-type breaking soliton eqnation

In this section, we will consider the symmetry of the foliowing (2 + 1)-dimensional AKNS-
type nonlinear evolution equation
qe = igsy — 2ig8; (gr)y (1)
ry = —irgy + 2ird; N gr)y. 2

Equations (1) and (2) can be considered as the compatibility condition for the following
Lax pair:

Yo = My 3
Ve =289y + Ny (4)
with
_{-¥ 4
w=(7 1)
_ { —i874gr)y ig,
N= ( Zir, | i7T(gn), )
and
=0 & = ZE‘EJ' (6)
i.e. equations (1) and (2) have the non-isospectral zero curvature equation
My — N+ MN—-NM—2EM, =0. €)]

When g = —r* = v, the equation system (I) and (2} reduces to a (2 + 1)-dimensional
nonlinear Schrddinger equation

i + Y + 29 WDy =0 (8)

and when y = x, equation (8) is just the weil known (1 4 I)-dimensional nonlinear

Schridinger equation. Equation (8) may be found in [12]. In [13] and [14] equation (8)

was deduced from twisior space and its soliton solutions are found by the Hirota mathod.

More solutions of (3} were given in [15] by Darboux transformation.
It is known that [16] the equation system (1} and (2} possesses a recursion aperator

(=8 +29397r  2487'g
P = ( —’Zra;'r 8 —2rd7'q )

which is the same as that of the (1 + 1)-dimensional AKNS system. Then using the recursion
operator and the seed symmetries, say space x and y translation invariance and scaling
invariance, one can get some sets of infinitely many symmetries [16] (« = (1)).

m=os  (g=(7)) x=o

72 = O (tuy + yuy) ) = " (—xuy — u + yuy). (10)

Using the ‘dressing method’ [17], the authors of [18] have obtained all t* (k > 0) dependent
symmetries. In this paper we manage to derive more generalized symmetries of the equation
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system (1) and (2) by means of a much simpler method given in [5-8]. For simplicity in
the notation, we rewrite equations (1) and (2) as

= duy = K{g,r} = Ku). (11)
A symmetry of equation (1), &, is defined as the solution of the linearized equation (11).

(%Y _ e i D

cr,_(ar);—l(a_y_%ael({q+eéq, r+edr) (12)

which means equation (11} is invariant in form under the transformation 4 — u + ¢o with
an infinitesimal parameter ¢. Now we look for the solutions of equation (12) having the
form

o=3 P00l (13)

k=0

where f(y) is an arbitrary function of y, f®}(y) = a‘j,%f (¥) and o[k] should be determined
later. Substituting equation (13) into equation (12), we have

o2
PIEACILAGES Z FEOK sk + }: FPG)Polk - 1. (14)

=1 k=o

Becanse f is an arbitrary function of y, equation {14) should be true at any order of
derivatives of f(y). That means

o:[0] = K'o[0] (15)

olk] — K'alk] = @afk — 1] (k = Q). (18)
Equation (15) shows us that o[0] itself should be a symmetry of equation (14), while o[£]
(4 > 0) should be determined recursively from equation {16). Fortunately, because ¢[0] is
a symmetry and @ is a recursion operator of the model, equation (16) can be solved easily.
The result reads:

k
o[k] = %cp*a[m. a7

Substituting equation (17) into (13} we can get a formal series symmetry starting from every
one of known symmetry:

o0 k
()= Y OOkl (18)
k=0 N

Generally speaking, series (18) is not truncated for the general function f(y). However,
if f{y) is fixed as a polynomial of y, say, f = y", then o(f)} becomes truncated. For

instance:
n

f
(") = ; Eﬁ—@r"yﬂ-%"a[o;. (19)

Using the known symmetries given in [16] or [18]), we can get various sets of formal
series symmetries. However, many of them are not independeni. The only three sets of
independent formal series symmetries read:

o k
K = Zf"‘)——K' fo“%«b”’c-’ux (20)

k=0

KZ (f) = Z f(k)t = Z f(k’) q)m-}-k @21

=0
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o tf(
w(f) = ?L:«, ol T = ; FOGO™H () + yuy) 22)
where n=0, 1, 2, ... because of K1, =0 (m <0y and m = 0, £1, &2, ... because of
P being invertible [19] and K2, #0, 1! 5 0. If we restrict f as polynomials of y, then
all the symmetries of [16] and [18] can be obtained as lmear combinations of (20)~(22)
with f = y" (r =0, 1, 2, ...). For instance, 72 = K} (), T} = 1,(1), K} = K!(1) and
KZ = KZ(1). At first sxght one may use (20)—{22) as new sccd symmetries to get new
symmetries by substituting them into equation (I8), but this procedure does not yield any
new result because we can redefine the arbitrary function of (18). We omit the proof of this
conclusion due to its simplicity,

3. Algebra structure of the non-truncated formal series symmetries of the AKNS-type
breaking soliton equation

In this section, we shall consider the algebraic structure of the symmetries of the equation
system (1) and (2) obtained in the last section. The Lie product of two symmetries A and
B is defined as

3
[A,Bl=A'B~-B'A= !il’l‘{l] EQ[A(H +€8) — B(u + eA)l. (23)
[ d

In order to find the algebraic structures of the formal series symmetries K)(f), K2(f) and
T2 (f), we write down the known algebraic structure of symmetries X}, X2 and 7! which
have been given by Li [16}

[KL KL =K} K21 =[K2 K2:1=0 (24)
(2., Kpl =mK,,.,_ 3 (25)
[Tn s Km] =(m—- DK m+n—1 (26)
(24, Tal = (B = W) Tpsn_ . (27

Using equations (24)—(27), we can get the full symmetry algebra of K} (f), KX(f) and
T ()

(K (A) K] = (28)
KM, K2()] = -K,l,+n(fg> (29)
(K2 KL = K2, (fifa— £ f1) (30)
[T () K (@) = mKp, 1 (F2) + K,LM-:(}-fg) (31)
() Ko@) = (m— DKL () + KR OF8) — Tuen(f8)  (32)
(% (f), T (@M = (11 = 1) Tonn1 (F8) + Tmancr (E Sy — F 8V (33

where f = & 7 (3).

The danvanon of the commutation refations (28)—(33) is rather straightforward. Here
we only give the derivation of the commutation relation (30), while the others can be derived
in a similar way.

(k) ok (1) et

o0

[K2(A). K2 ()] =ZZ[ e K KL ) = e (KLY PG m}
k=0

o0 l (k) ol

Z I

k=0 =0

[ @ YU K2 ey + @0, (0 K2,
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) gl e )02 e
L [@m YU K2,y + 0713, (P K2
@) £kt
= ZZ f I{‘“ [(q)n“!-k)[ _H]uy (I)"‘HCayK’i-H

&=0 =0
_(¢m+!) [Kn+k]"y - q’MHBy K:H:]
o0 (k) pO41) ket (k+1) f!) k!
Lt Atk 32 1 4 RN |
+;§( P k't' O K
5
0 f( Jf()tk—;-t

= ZZT[ e Kol

k=0 1=0
e @ ey GHDy g
2> A0 A Y A
k=0 =0 777
&) S ff_ i k! f(:c I)f(H-l] f(k—nf(t-s-n) K
yra k' — lr(k - l)' I itk
o 4k v
}C_' f2f1 flfz) )Km-&-n-i-k
k=0
= Kp o (ifi = FLf). (34)

Now, we see that, though the formal series symmetries are not truncated for general function
f(¥), we can siill get a closed symmetry algebra. In particular two types of generalized
Virasoro algebra exist for non-truncated series symmetries K2(f) and 7,(f). Note that the
generalized Virasoro type symmetry algebras (30) and (33) are valid not only forn,m 2 0,
but also for n, m < 0 because &, the recursion operator of AKNS, is invertible [19] and K2
and 1! are not equal to zero for # < 0. As a comparison, in some other integrable models,
like the KP and Toda equations [5, 6], the generalized W, algebra exists only forn, m = 0.

If we take the arbitrary function £(y) as a polynomial of y, say y”, the generalized
Virasoro algebras constituted by K2(f) and z,(f) reduce to

[WI, WSl = (s — rwitr -] (wh = K2(y")) mon,rs=0%+1,+2... (35)

and

Vi, Vil=(m—n+s—nV. | W =n(") marns=0+1+£2,....
(36)

Furthermore, the algebra (35) and (36) will reduce to the usual Virasoro algebra for
m=n=0and r = 5 = 0 respectively. W, and V; are truncated for r > 0. If we take the
arbitrary function f{y) as the exponential of y say, f(y) = expry (r = 0,£1,£2,...},
the generalized Virasoro algebra constituted by K2(f) reduces to

[W!, Wil = (s —r)Wit" n,m,rs=0,+1%2,... (37)

ni-n

where WI = K2(expry) are not truncated for all non-zero r. The algebra (37) will also
reduce to the usual Virasoro algebra for m = n = 0, whereas the algebra (33) is not closed
for f(y) = expry. Moreover, if we restrict f(y) as

f(y) =y expsy (r.s =0,£1,£2,..) (38)
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then the algebras (30) and (34) reduce to the ‘coloured” Virasoro algebras (W[ =
K2(y expsy), V[ = 5,(3 expsy), nor, s =0, £1,£2,..)

W1 W r1+r=1.51+s riHry, s

(Wo, WSl = (n—rdWohy, 1+ (2 =)W i™ ™ (39)
| +rasid ]

Vo™ Vil = G = my b ry = i)V 2y o+ (s = ) VT (40)

where all W7 = Kf(y’ expsy) and V' = 1,(y" expsy) are not truncated for 5 7 0.

4. Summary and discussion

The breaking soliton equation is ancther type of (2 -+ 1)}-dimensional integrable model.
Any (14 1)-dimensional integrable model which has one hereditary recursion operator can
be extended to a (2 + I)-dimensional breaking soliton equation. The AKNS-type (2 + 1)-
dimensional breaking soliton equation is a typical one amongst them. In this paper we have
studied the symmetry structure of the AKNS-type breaking soliton equation by means of the
formal series symmetry approach. Starting from every one of the known symmetries, one
can obtain a new symmetry with an arbitrary function of y. Generally, this new symmetry
exhibits as a non-truncated series. If the arbitrary function is fixed as a polynomial of y,
then the formal series is truncated naturally. Using the known simple symmetries given by
Li [16, 18], we get three sets of generalized infinitely many formal series symmetries. All
the spacetime polynomial dependent symmetries can be obtained from these formal series
symmetries simply by taking the arbitrary functions of these symmetries as polynomials.
From [5-8], we know that the truncated symmeiries obtained from the formal series
symmetries constitute usually the generalized W, algebra, a type of generalization of
the usual Virasoro algebra, whereas the non-truncated symmetries of the breaking soliton
equation constitute another type of generalization of the Virasoro algebra. For the AKNS-type
breaking soliton equation, two types of generalized Virasoro algebras constituted by two sets
of non-truncated symmetries are found. If we fix the arbitrary functions as the polynomials
or exponentials of y, then some types of usual Virasoro algebras can be obtained as some
special subalgebras.

Though the discussion of this paper is confined to the case of the AKNS-type breaking
soliton equation, many of the results remajn valid for all breaking soliton equations. For
instance, symmetries K!(f) and K*(f) shown by equations (21) and (22) are valid for
all breaking soliton equations whence the recursion operators of them are space (x, y)
translation invariant and then the generalized symrmetry algebras (28)-(30) constituted
by K)(f) and K*(f) are also valid for all (x, y)-translation invariant breaking soliton
hierarchies. The non-truncated formal series symmetries are worthy of further study
especially in other types of integrable model.
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